Stabilities of homothetically shrinking Yang-Mills solitons

2015 
In this paper we introduce entropy-stability and F-stability for homothetically shrinking Yang-Mills solitons, employing entropy and second variation of $\mathcal{F}$-functional respectively. For a homothetically shrinking soliton which does not descend, we prove that entropy-stability implies F-stability. These stabilities have connections with the study of Type-I singularities of the Yang-Mills flow. Two byproducts are also included: We show that the Yang-Mills flow in dimension four cannot develop a Type-I singularity; and we obtain a gap theorem for homothetically shrinking solitons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    8
    Citations
    NaN
    KQI
    []