Bathymetric gradient shapes the community composition rather than the species richness of deep-sea benthic ciliates.

2021 
The bathymetric gradient is one of the most important factors that regulate the distribution of life. However, community variations of benthic ciliates along bathymetric gradients in the deep sea remain rather unexplored. In this study, we hypothesize that in the deep sea, the bathymetric gradient shapes the benthic ciliate community composition rather than the species richness. Here, we evaluated the distribution patterns and drivers of benthic ciliate communities of an abyssal plain, a seamount, and a trench with water depths ranging from 800 m down to 6600 m by high throughput eDNA sequencing and statistical analyses. We observed no significant correlation between ciliate operated taxonomic unit (OTU) richness and water depth. A meta-analysis, which combined our previously published data from the neritic habitats, supports the notion that water depth exceeding 800 m has little effect on the richness of benthic ciliate species. In contrast, the composition of deep-sea ciliate communities was significantly distinct in different habitats along the bathymetric gradients. A SourceTracker analysis revealed extremely low connectivity among ciliate communities along the bathymetric gradients. More than 95% of the community dissimilarity in the deep-sea floor was attributed to species replacement, which might be caused by environmental sorting or historical constraints. Furthermore, the observed community variations could be ascribed more to water depth than to geographic distance. The findings imply that the strong force of environmental sorting along the bathymetric gradients and the low connectivity among the ciliate communities might lead to an isolated evolution. This could shape the community composition rather than the species richness, which is mainly determined by the limited nutrient availability and the extreme environmental conditions in the deep sea.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []