Extensive fragmentation and re-organization of gene co-expression patterns underlie the progression of Systemic Lupus Erythematosus

2020 
Systemic Lupus Erythematosus (SLE) is the prototype of autoimmune diseases, characterized by extensive gene expression perturbations in peripheral blood immune cells. Circumstantial evidence suggests that these perturbations may be due to altered epigenetic profiles and chromatin accessibility but the relationship between transcriptional deregulation and genome organization remains largely unstudied. We developed a genomic approach that leverages patterns of gene coexpression from genome-wide transcriptome profiles in order to identify statistically robust Domains of Co-ordinated gene Expression (DCEs). By implementing this method on gene expression data from a large SLE patient cohort, we identify significant disease-associated alterations in gene co-regulation patterns, which also correlate with the SLE activity status. Low disease activity patient genomes are characterized by extensive fragmentation leading to DCEs of smaller size. High disease activity genomes display excessive spatial redistribution of co-expression domains with expanded and newly-appearing (emerged) DCEs. Fragmentation and redistribution of gene coexpression patterns correlate with SLE-implicated biological pathways and clinically relevant endophenotypes such as kidney involvement. Notably, genes lying at the boundaries of split DCEs of low activity genomes are enriched in the interferon and other SLE susceptibility signatures, suggesting the implication of DCE fragmentation at early disease stages. Interrogation of promoter-enhancer interactions from various immune cell subtypes shows that a significant percentage of nested connections are disrupted by a DCE split or depletion in SLE genomes. Collectively, our results underlining an important role for genome organization in shaping gene expression in SLE, could provide valuable insights into disease pathogenesis and the mechanisms underlying disease flares.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []