A Bayesian Approach to Concept Drift

2010 
To cope with concept drift, we placed a probability distribution over the location of the most-recent drift point. We used Bayesian model comparison to update this distribution from the predictions of models trained on blocks of consecutive observations and pruned potential drift points with low probability. We compare our approach to a non-probabilistic method for drift and a probabilistic method for change-point detection. In our experiments, our approach generally yielded improved accuracy and/or speed over these other methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    17
    Citations
    NaN
    KQI
    []