Sequence and analysis of a portion of the genomes of Shope fibroma virus and malignant rabbit fibroma virus that is important for viral replication in lymphocytes.
1991
Abstract The 10.7-kb Bam HI “C” restriction fragment of malignant rabbit fibroma virus (MV) contains genes that are important for its immunosuppressive activity. When this fragment is transferred to a related avirulent leporipoxvirus, Shope fibroma virus (SFV), recombinant viruses show clinical features characteristic of MV: they replicate in lymphocytes and alter immune function in vitro , induce disseminated tumors in recipient rabbits, and are immunosuppressive in vivo . The 10.7-kb Bam HI “C” restriction fragment of MV was sequenced in its entirety. Its DNA sequence and the 14 ORF's derived from analyzing this sequence are discussed. Analysis of known open reading frames to which the ORF's from MV's Bam “C” fragment show homology permits us to identify some MV ORF's showing high degrees of similarity to known and postulated proteins produced by vaccinia virus. Functions for some of these vaccinia proteins are known, while functions for others are hypothetical or unknown. Further analysis of genetic determinants of MV's virulence has indicated that two overlapping restriction subfragments of the Bam HI “C” fragment can transfer MV's virulent behavior to SFV. The 0.7-kb region in which these two subfragments overlap includes the C-terminus of MV orf C-7 and the N terminus of MV orf C-8. These correspond to the C- and N-termini, respectively, of SFV orf's D-9 and D-10 and to vaccinia orf's D-6 (early transcription factor) and D-7 (subunit of RNA polymerase). We sequenced the region of SFV's Bam HI “D” fragment in this area and illustrate here the comparative sequences of this portion of SFV's genome and orf's. On the basis of comparisons between MV, SFV, and vaccinia in this area we discuss the potential significance of these observations.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
17
Citations
NaN
KQI