Development and characterization of SARS-CoV-2 variant-neutralizing monoclonal antibodies

2021 
Vaccination and administration of monoclonal antibody cocktails are effective tools to control the progression of infectious diseases and to terminate pandemics such as COVID-19. However, the emergence of SARS-CoV-2 mutants with enhanced transmissibility and altered antigenicity requires broad-spectrum therapies. Here we developed a panel of SARS-CoV-2 specific mouse monoclonal antibodies (mAbs), and characterized them based on ELISA, Western immunoblot, isotyping, and virus neutralization. Six neutralizing mAbs that exhibited high-affinity binding to SARS-CoV-2 spike protein were identified, and their amino acid sequences were determined by mass spectrometry. Functional assays confirmed that three mAbs, F461G11, F461G15, and F461G16 neutralized four variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) These mAbs are promising candidates for COVID-19 therapy, and understanding their interactions with virus spike protein should support further vaccine and antibody development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []