Mechanism of the Reaction of OH with Alkynes in the Presence of Oxygen

2013 
Previous work has shown that the branching ratio of the reaction of OH/C2H2/O2 to glyoxal and formic acid is dependent on oxygen fraction, and a significant component of the product yield under atmospheric conditions is formed from reaction of chemically activated OH–C2H2 adduct. In this article, isotopic substitution is used to determine the mechanism of the OH/C2H2/O2 reaction resolving previous contradictory observations in the literature. Using laser flash photolysis and probing OH concentrations via laser induced fluorescence, a rate coefficient of kHO–C2H2+O2 = (6.17 ± 0.68) × 10–12 cm3 molecule–1 s–1 is determined at 298 K from the analysis of biexponential OH decays in the presence of C2H2 and low concentrations of O2. The studies have been extended to propyne and but-2-yne. The reactions of OH with propyne and but-2-yne have been studied as a function of pressure in the absence of oxygen. The reaction of OH with propyne is in the fall off region from 2–25 Torr of nitrogen at room temperature. A p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    17
    Citations
    NaN
    KQI
    []