Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines.
2021
Herein, we report a reaction that selectively generates 3-arylpyridine and quinoline motifs by inserting aryl carbynyl cation equivalents into pyrrole and indole cores, respectively. By employing α-chlorodiazirines as thermal precursors to the corresponding chlorocarbenes, the traditional haloform-based protocol central to the parent Ciamician-Dennstedt rearrangement can be modified to directly afford 3-(hetero)arylpyridines and quinolines. Chlorodiazirines are conveniently prepared in a single step by oxidation of commercially available amidinium salts. Selectivity as a function of pyrrole substitution pattern was examined, and a predictive model based on steric effects is put forward, with DFT calculations supporting a selectivity-determining cyclopropanation step. Computations surprisingly indicate that the stereochemistry of cyclopropanation is of little consequence to the subsequent electrocyclic ring opening that forges the pyridine core, due to a compensatory homoaromatic stabilization that counterbalances orbital-controlled torquoselectivity effects. The utility of this skeletal transform is further demonstrated through the preparation of quinolinophanes and the skeletal editing of pharmaceutically relevant pyrroles.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
84
References
3
Citations
NaN
KQI