The arginine finger of bacteriophage T7 gene 4 helicase: Role in energy coupling

2004 
The DNA helicase encoded by gene 4 of bacteriophage T7 couples DNA unwinding to the hydrolysis of dTTP. The loss of coupling in the presence of orthovanadate (Vi) suggests that the γ-phosphate of dTTP plays an important role in this mechanism. The crystal structure of the hexameric helicase shows Arg-522, located at the subunit interface, positioned to interact with the γ-phosphate of bound nucleoside 5′ triphosphate. In this respect, it is analogous to arginine fingers found in other nucleotide-hydrolyzing enzymes. When Arg-522 is replaced with alanine (gp4-R522A) or lysine (gp4-R522K), the rate of dTTP hydrolysis is significantly decreased. dTTPase activity of the altered proteins is not inhibited by Vi, suggesting the loss of an interaction between Vi and gene 4 protein. gp4-R522A cannot unwind DNA, whereas gp4-R522K does so, proportionate to its dTTPase activity. However, gp4-R522K cannot stimulate T7 polymerase activity on double-stranded DNA. These findings support the involvement of the Arg-522 residue in the energy coupling mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    48
    Citations
    NaN
    KQI
    []