Structural Basis of the Broad Specificity of a General Odorant-Binding Protein from Honeybee

2009 
General odorant-binding proteins (GOBPs) are believed to transport a wide range of volatile hydrophobic molecules across the aqueous sensillum lymph toward olfactory receptors in insects. GOBPs are involved in the first step of odorant recognition, which has a great impact in agriculture and in insect-mediated human disease control. We report here the first structural study of a GOBP, the honeybee ASP2, in complex with a small hydrophilic ligand. The overall fold of the NMR structure of ASP2 consists of the packing of six α-helices creating an internal cavity and closely resembles that of the related pheromone-binding proteins (PBPs). The predominantly hydrophobic internal cavity of ASP2 provides additional possible interactions (π-stacking, electrostatic contact) for ligand binding. We also show that the internal cavity of ASP2 has the ability to bind ligands of different structures and properties, including a hydrophobic component of the floral scent [2-isobutyl-3-methoxypyrazine (IBMP)] and a small hyd...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    43
    Citations
    NaN
    KQI
    []