Epidermal Growth Factor Receptor Regulation of Ewing Sarcoma Cell Function

2018 
OBJECTIVE: Ewing sarcoma (ES) is a type of childhood cancer probably arising from stem mesenchymal or neural crest cells. The epidermal growth factor receptor (EGFR) acts as a driver oncogene in many types of solid tumors. However, its involvement in ES remains poorly understood. METHODS: Human SK-ES-1 and RD-ES ES cells were treated with EGF, the EGFR inhibitor tyrphostin (AG1478), or phosphoinositide 3-kinase (PI3K) or extracellular-regulated kinase (ERK)/mitogen-activated kinase (MAPK) inhibitors. Cell proliferation survival, cycle, and senescence were analyzed. The protein content of possible targets of EGFR manipulation was measured by Western blot. RESULTS: Cell proliferation and survival were increased by EGF and inhibited by AG1478. The EGFR inhibitor also altered the cell cycle, inducing arrest in G1 and increasing the sub-G1 population, reduced polyploidy and increased the population of senescent cells. In addition, AG1478 reduced the levels of phosphorylated AKT (p-AKT), ERK, p-ERK, cyclin D1, and brain-derived neurotrophic factor (BDNF), while enhancing p53 levels. Cell proliferation was also impaired by inhibitors of PI3K or ERK, alone or combined with AG1478. CONCLUSIONS: Our findings reveal novel aspects of EGFR regulation of ES cells and provide early evidence for antitumor activities of EGFR inhibitors in ES.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    6
    Citations
    NaN
    KQI
    []