A compact electron matter wave interferometer for sensor technology

2017 
Remarkable progress can be observed in recent years in the controlled emission, guiding and detection of coherent, free electrons. Those methods were applied in matter wave interferometers leading to high phase sensitivities and novel sensor technologies for dephasing influences such as mechanical vibrations or electromagnetic frequencies. However, the previous devices have been large laboratory setups. For future sensor applications or tests of the coherence properties of an electron source, small, portable interferometers are required. Here, we demonstrate a compact biprism electron interferometer that can be used for mobile applications. The design was optimized for small dimensions by beam path simulations. The interferometer has a length between the tip and the superposition plane before magnification of only 47 mm and provides electron interference pattern with a contrast up to 42.7 %. The detection of two dephasing frequencies at 50 and 150 Hz was demonstrated applying second order correlation and Fourier analysis of the interference data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []