Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical-Radical Cross-Coupling Powered by Visible Light Photocatalysis.

2020 
Transition-metal-catalyzed C-N bond-forming reactions have emerged as fundamental and powerful tools to construct arylamines, a common structure found in drug agents, natural products, and fine chemicals. Reported herein is an alternative access to heteroarylamine via radical-radical cross-coupling pathway, powered by visible light catalysis without any aid of external oxidant and reductant. Only by visible light irradiation of a photocatalyst, such as a metal-free photocatalyst, does the cascade single-electron transfer event for amines and heteroaryl nitriles occur, demonstrated by steady-state and transient spectroscopic studies, resulting in an amine radical cation and aryl radical anion in situ for C-N bond formation. The metal-free and redox economic nature, high efficiency, and site-selectivity of C-N cross-coupling of a range of available amines, hydroxylamines, and hydrazines with heteroaryl nitriles make this protocol promising in both academic and industrial settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    21
    Citations
    NaN
    KQI
    []