On Rayleigh-Plesset based cavitation modelling of fluid film bearings using the Reynolds equation

2015 
In the 'universe' of the general cavitation phenomena the issue of cavitation in bearings, due to its particular application and the mostly non-homogeneous working fluids associated with it, has presented a rather specialized challenge. The present paper models the phenomenon of pseudo-cavitation in fluid film bearings and offers a physics-based approach that conserves mass while solving the Reynolds (RE) and Rayleigh-Plesset (RP) equations in a coupled, fully transient environment. The RP solution calculates a time dependent void fraction synchronized with the RE transient solution, where density and viscosity are (re)calculated at every grid point of this homogeneous two-phase fluid. The growth and evolution of the cavitation zone expanse is physics-based and thus can accommodate evaporation, diffusion, or pseudocavitation as separate processes. This is a step beyond the present available cavitation models both for the RE and the Navier-Stokes equations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []