Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome
2011
Major controversy exists as to whether increased C-reactive protein (CRP) contributes to individual components of the metabolic syndrome or is just a secondary response to inflammatory disease processes. We measured blood pressure and metabolic phenotypes in spontaneously hypertensive rats (SHR) in which we transgenically expressed human CRP in liver under control of the apoE promoter. In SHR transgenic rats, serum levels of human CRP approximated the endogenous levels of CRP normally found in the rat. Systolic and diastolic blood pressures measured by telemetry were 10–15 mmHg greater in transgenic SHR expressing human CRP than in SHR controls (P<0.01). During oral glucose tolerance testing, transgenic SHR exhibited hyperinsulinemia compared to controls (insulin area under the curve 36±7 versus 8±2 nmol/L/2h, respectively, P<0.05). Transgenic SHR also exhibited resistance to insulin stimulated glycogenesis in skeletal muscle (174±18 versus 278±32 nmol glucose/g/2h, P<0.05), hypertriglyceridemia (0.84±0.05 versus 0.64±0.03 mmol/L, P<0.05), reduced serum adiponectin (2.4±0.3 versus 4.3±0.6 mmol/L, P<0.05), and microalbuminuria (200±35 versus 26±5 mg albumin/g creatinine, respectively, P<0.001). Transgenic SHR had evidence of inflammation and oxidative tissue damage with increased serum levels of interleukin 6 (IL6) (36.4±5.2 versus 18±1.7 pg/ml, P<0.005) and increased hepatic and renal TBARS (1.2±0.09 versus 0.8±0.07 and 1.5±0.1 versus 1.1±0.05 nM/mg protein, respectively, P<0.01), suggesting that oxidative stress may be mediating adverse effects of increased human CRP. These findings are consistent with the hypothesis that increased CRP is more than just a marker of inflammation and can directly promote multiple features of the metabolic syndrome.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
57
Citations
NaN
KQI