Out-of-equilibrium phase diagram of long-range superconductors

2019 
Within the ultimate goal of classifying universality in quantum many-body dynamics, understanding the relation between out-of-equilibrium and equilibrium criticality is a crucial objective. Models with power-law interactions exhibit rich well-understood critical behavior in equilibrium, but the out-of-equilibrium picture has remained incomplete, despite recent experimental progress. We construct the rich dynamical phase diagram of free-fermionic chains with power-law hopping and pairing, and provide analytic and numerical evidence showing a direct connection between nonanalyticities of the return rate and zero crossings of the string order parameter. Our results may explain the experimental observation of so-called \textit{accidental} dynamical vortices, which appear for quenches within the same topological phase of the Haldane model, as reported in [Fl\"aschner \textit{et al.}, Nature Physics \textbf{14}, 265 (2018)]. Our work is readily applicable to modern ultracold-atom experiments, not least because state-of-the-art quantum gas microscopes can now reliably measure the string order parameter, which, as we show, can serve as an indicator of dynamical criticality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    16
    Citations
    NaN
    KQI
    []