Cooperative control of modular space robots

2011 
Modular self-assembling on-orbit robots have the potential to reduce mission costs, increase reliability, and permit on-orbit repair and refueling. Modules with a variety of specialized capabilities would self-assemble from orbiting inventories. The assembled modules would then share resources such as power and sensors. As each free-flying module carries its own attitude control actuators, the assembled system has substantial sensor and actuator redundancy. Sensor redundancy enables sensor fusion that reduces measurement error. Actuator redundancy gives a system greater flexibility in managing its fuel usage. In this paper, the control of self-assembling space robots is explored in simulations and experiments. Control and sensor algorithms are presented that exploit the sensor and actuator redundancy. The algorithms address the control challenges introduced by the dynamic interactions between modules, the distribution of fuel resources among modules, and plume impingement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    15
    Citations
    NaN
    KQI
    []