Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon-Aramid Fiber/Epoxy Sandwich Composite Patch

2019 
Fiber-reinforced epoxy sandwich composites, which were designed as the bonded repair patches to better recover the mechanical performance of a central cracked aluminum alloy plate, were layered by carbon and aramid fiber layers jointly and cured by microwave method in this study. The static tensile and bending properties of both carbon-aramid fiber/epoxy sandwich composite patches and the cracked aluminum alloy plates after bonded repair were systematically investigated. By comparing the mechanical performance with traditional single carbon-fiber-reinforced composite patches, it can be found that the bending performance of carbon-aramid fiber sandwich composite patches was effectively improved after incorporation of flexible aramid fiber layers into the carbon fiber layers, but the tensile strength of sandwich composite patches was weakened to some extent. Especially, the sandwich patches with 3 fiber layers exhibited better tensile and bending performance in comparison to patches of 5 and 7 fiber layers. The optimized 3-layer carbon-aramid fiber sandwich patch repaired plate recovered 86% and 190% of the tensile and bending performance in comparison to the uncracked ones, respectively, showing a considerable repair majorization effect for the cracked aluminum alloy plate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []