Building a Robust Commercial Microgravity Economy in Earth's Orbit: Economic Readiness Considerations

2016 
The reduced gravity environment of space provides a unique opportunity to further our understanding of various materials phenomena involving the molten, fluidic and gaseous states as well as life science applications where, contrary to earlier beliefs, microgravity induces changes in single cells and simple organisms; not only in large organisms with a complex overall response to gravity (or lack thereof). The potential breadth of commercial opportunities in microgravity thus spans over many verticals of the private sector with applications ranging from fiber optics, high-resolution crystals, microencapsulation, 3D organs to perfume and color dyes. Overall, products manufactured in microgravity hold the promise to have key properties surpassing their best terrestrial counterparts. Commercialization, also known as taking a new technology to market, is a journey in itself where the business, economic, market and technological components must align to generate a successful outcome. A business perspective is very different than technology maturation. In order for a technology to be ready for commercialization, it must not only be mature, but it must also have a compelling business case, and the means to scale up production must be identified and practical. Creating a robust economy in Earths orbit (Fig 1) is especially challenging because of the complexity (high risks, lack of standardization) involved in predicting future growth. This complexity can easily overwhelm the fact that many of the products have an attractive touch of space which aids with branding and marketing.This paper reviews the types of added value that can be extracted from space, with an emphasis on the microgravity environment. In addition, lessons learned from past commercialization efforts will be reviewed. While past efforts have yielded some point successes, they have as a whole failed to precipitate a sustainable LEO based market
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []