Magnetic, Pseudocapacitive, and H2O2-Electrosensing Properties of Self-Assembled Superparamagnetic Co0.3Zn0.7Fe2O4 with Enhanced Saturation Magnetization

2019 
The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co0.3Zn0.7Fe2O4 microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co0.3Zn0.7Fe2O4 microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV–vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co0.3Zn0.7Fe2O4 microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mossbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The v...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    117
    References
    3
    Citations
    NaN
    KQI
    []