Precision-cut liver slices as a model for assess hepatic cellular response of chitosan-glutathione nanoparticles on cultures treated with zilpaterol and clenbuterol.

2021 
Zilpaterol and clenbuterol are two β-adrenergic agonist drugs used in animal production. Both drugs have anabolic effects with advantages on carcass yield. Meanwhile, zilpaterol is approved for animal feed in authorized countries. Clenbuterol is a banned substance due to the risk of toxicity; however, it is still being used in unknown dose levels in many farm species. Therefore, the use and abuse of these substances should be closely monitored, considering the clenbuterol ability and the not proved yet of zilpaterol to produce reactive oxygen and nitrogen species. Regarding glutathione which is the main intracellular antioxidant and plays detoxification functions on liver metabolism; in this work is our interest to know the capacity of chitosan-glutathione nanoparticles (CS/GSH-NP) as a complementary source of exogenous GSH to modify the oxide-reduction status on bovine precision-cut liver slice cultures (PCLS) exposed to clenbuterol and zilpaterol. A single drug assay was performed in first instance by adding clenbuterol, zilpaterol, chitosan nanoparticles (CS-NP), and CS/GSH-NP. Then combinate drug assay was carried out by testing clenbuterol and zilpaterol combined with CS-NP or CS/GSH-NP. The results showed that both β-adrenergic agonists modify in a dose-dependent manner the oxide-reduction response through ROS generation. Glutathione peroxidase activity, and intracellular GSH content; and release of liver enzymes associated with hepatocellular damage like gamma glutamyl-transpeptidase, aspartate aminotransferase, alanine aminotransferase. The exogenous GSH delivered by nanoparticles could be used to modulate these markers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []