ION PAIRS SIGNIFICANTLY STABILIZE COILED-COILS IN THE ABSENCE OF ELECTROLYTE
1996
Abstract We have used a synthetic coiled-coil peptide model system to address the long perplexing issue as to why coiled-coils are in general more stable at acidic pH than at neutral pH. Contrary to the above expectation, our results show that at low ionic strength (10 mM) the coiled-coil was much more stable at neutral pH than at acidic pH against both thermal and urea unfolding, indicating that the Lys + -Glu − ions pairs present around the coiled-coil interface at neutral pH contribute significantly to the stability of the coiled-coil. However, while the addition of NaCl had no significant effect on the coiled-coil stability at neutral pH, its stability at acidic pH increased dramatically. The cross-over point between the stability at acidic pH and neutral pH occurred at around 100 mM salt, above which the coiled-coil became more stable at acidic pH, in agreement with published results. Therefore, salt effect, rather than intrinsic property, such as carboxyl – carboxyl hydrogen bonding, causes this coiled-coil to become more stable at acidic pH. The preferential stabilizing effect of salt on the coiled-coil at acidic pH can be best explained in terms of the condensation of anions to the positively charged groups on the coiled-coil, the net density of which increases as glutamic acid residues become protonated in acidic pH.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
59
Citations
NaN
KQI