Mutational analysis of residues important for ligand interaction with the human P2Y12 receptor

2010 
The P2Y12 receptor, a Gi protein-coupled receptor, plays a central role in platelet activation. In this study, we did a mutational analysis of residues possibly involved in the ligand interactions with the human P2Y12 receptor. Mutant receptors were stably expressed in CHO-K1 cells with an HA-tag at the N-terminus. Expression of wild-type and mutant receptors was confirmed by detecting the HA-tag on the cell membrane. Residues in transmembrane helical domains (TMs) 3, 5, 6, and 7, which are homologous to residues important for P2Y1 receptor activation and ligand recognition, were replaced by site-directed mutagenesis. ADP-induced inhibition of forskolin-stimulated cAMP levels in the presence or absence of antagonist AR-C69931MX were investigated for each of the mutant receptors. F104S and S288P significantly increased agonist-induced receptor function without affecting the antagonism by AR-C69931MX. Arg256 in TM6 and Arg 265 in extracellular loop 3 (EL3) are more important for antagonist recognition than effect on agonist-mediated receptor function. Compared to wild-type P2Y12 receptor, mutations in Arg 256 or/and Arg 265 significantly increased the sensitivity to antagonist AR-C69931MX. Our study shows that the cytosolic side of TM3 and the exofacial side of TM5 are critical for P2Y12 receptor function, which is different from P2Y1. Arg 256 in TM6 and Arg265 in EL3 appear to play a role in antagonist recognition rather than effects on agonist-induced receptor function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []