Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations

2022 
Abstract Magnetic drug delivery acts as an efficient method for carrying a drug directly to an organ or targeted location in the body by incorporating magnetically vulnerable material coated with a drug-laden matrix. Magnetic nanoparticles of MOF acts as a drug carrier by targeting the treatment location without affecting the other cells. In this view, the synthesis of the porous flexible Cu-based metal-organic framework (MOF), Cu-BTC (BTC, benzene tricarboxylic acid), also known as HKUST-1 has been examined. The crystalline growth has been optimized through improvised hydrothermal technique profiles using non-toxic solvents. Structural properties were investigated using X-ray diffraction spectroscopy, Scanning electron microscopy, and Fourier-transform infrared spectroscopy. X-ray absorption spectra at O and C K-edges along with Cu L-edge to affirm the electronic structure in the optimized sample. The yield of the reaction was ∼ 72% and ∼ 80% for chemical and hydrothermal techniques, respectively. The experiment was carried out by taking 3.5 ppm as an optimized concentration of paracetamol, where HKUST-1 (1 mg) sample was added into the solution and, a small amount of sample was withdrawn at certain time intervals, whose absorbance was checked using UV–Visible spectroscopy. The investigated kinetics was proposed to generalize the drug delivery technique using bio-compatible MOFs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []