Study of Adaptive Model Parameter Estimation for Milling Tool Wear
2011
In a modern machining system, tool wear monitoring systems are needed to get higher quality production. In precision machining processes, especially surface quality of the manufactured part can be related to tool wear. This increases industrial interest for in-process tool wear monitoring systems. For the modern unmanned manufacturing process, an integrated system composed of sensors, signal processing interface and intelligent decision making model are required. In this study, a new method for on-line tool wear monitoring is presented under varying cutting conditions. The proposed method uses wear feature extraction based on process modeling and parameter estimation. An adaptive estimation model of milling tool wear in variable cutting parameters is built based entirely on milling power. The adaptive model traces the properties of cutting process by combining process state signal, cutting conditions, power model. The tool wear feature is obtained from the estimated parameters of the model and carried on in the theoretical and experimental study. Experiment results have proved that changes of the parameters in the cutting power model significantly indicate tool wear independently of varying cutting conditions and it makes tool wear a recognized process with high precision.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
8
Citations
NaN
KQI