Lunasin attenuates oxidant-induced endothelial injury and inhibits atherosclerotic plaque progression in ApoE−/− mice by up-regulating heme oxygenase-1 via PI3K/Akt/Nrf2/ARE pathway

2019 
Oxidative stress–induced vascular endothelial cell (VEC) injury is a major mechanism in the initiation and development of atherosclerosis. Lunasin, a soybean-derived 43-aa peptide, has been previously shown to possess potent antioxidant and anti-inflammatory activities other than its established anticancer activities. This study investigated the effects of lunasin on protecting VECs from oxidative damage and inhibiting atherosclerotic plaque progression in apolipoprotein E–deficient (ApoE−/−) mice and explored its underlying mechanism. Biochemical and histologic analyses were performed by using EA.hy926 human VECs and a high-fat diet (HFD) ApoE−/− mouse atherosclerosis model. Our data indicated that lunasin attenuated H2O2-induced, mitochondria-dependent endothelial apoptosis via down-regulating Bax and up-regulating Bcl-2, inhibiting the mitochondrial depolarization, and reducing the release of cytochrome c, as well as decreasing the activation of caspase-9 and caspase-3 in vitro and in vivo. Mechanic st...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    17
    Citations
    NaN
    KQI
    []