Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras

2016 
Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R 2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott’s refined index of model performance d r equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    13
    Citations
    NaN
    KQI
    []