Schizophrenia susceptibility gene product dysbindin-1 regulates the homeostasis of cyclin D1

2016 
Abstract Dysbindin-1 (dystrobrevin binding protein-1, DTNBP1) is now widely accepted as a potential schizophrenia susceptibility gene and accumulating evidence indicates its functions in the neural development. In this study, we tried to identify new binding partners for dysbindin-1 to clarify the novel function of this molecule. When consulted with BioGRID protein interaction database, cyclin D3 was found to be a possible binding partner for dysbindin-1. We then examined the interaction between various dysbindin-1 isoforms (dysbindin-1A, -1B and -1C) and all three D-type cyclins (cyclin D1, D2, and D3) by immunoprecipitation with the COS7 cell expression system, and found that dysbindin-1A preferentially interacts with cyclin D1. The mode of interaction between these molecules was considered as direct binding since recombinant dysbindin-1A and cyclin D1 formed a complex in vitro . Mapping analyses revealed that the C-terminal region of dysbindin-1A binds to the C-terminal of cyclin D1. Consistent with the results of the biochemical analyses, endogenous dysbindin-1was partially colocalized with cyclin D1 in NIH3T3 fibroblast cells and in neuronal stem and/or progenitor cells in embryonic mouse brain. While co-expression of dysbindin-1A with cyclin D1 changed the localization of the latter from the nucleus to cytosol, cyclin D1-binding partner CDK4 inhibited the dysbindincyclin D1 interaction. Meanwhile, depletion of endogenous dysbindin-1A increased cyclin D1 expression. These results indicate that dysbindin-1A may control the cyclin D1 function spatiotemporally and might contribute to better understanding of the pathophysiology of dysbindin-1-associated disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    4
    Citations
    NaN
    KQI
    []