Design and Implementation of a Data-Driven Approach to Visualizing Power Quality

2020 
Numerous underlying causes of power-quality (PQ) disturbances have enhanced the application of situational awareness to power systems. This application provides an optimal overall response for contingencies. With measurement data acquired by a multi-source PQ monitoring system, we propose an interactive visualization tool for PQ disturbance data based on a geographic information system (GIS). This tool demonstrates the spatio–temporal distribution of the PQ disturbance events and the cross-correlation between PQ records and environmental factors, leveraging Getis statistics and random matrix theory. A methodology based on entity matching is also introduced to analyze the underlying causes of PQ disturbance events. Based on real-world data obtained from an actual power system, offline and online PQ data visualization scenarios are provided to verify the effectiveness and robustness of the proposed framework.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    3
    Citations
    NaN
    KQI
    []