Mutations affecting the conserved acidic WNK1 motif cause inherited hyperkalemic hyperchloremic acidosis.

2020 
Gain-of-function mutations in the WNK1 and WNK4 genes are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare inherited disorder characterized by arterial hypertension and hyperkalemia with metabolic acidosis. More recently, FHHt-causing mutations in the KLHL3-CUL3 E3 ubiquitin ligase complex have shed light on the importance of WNKs cellular degradation on renal ion transport. Using full exome sequencing in a four-generation family and then targeted sequencing in other suspected cases, we have identified new missense variants at the WNK1 gene, clustering in the short conserved acidic motif known to interact with the KLHL3-CUL3 ubiquitin complex. Affected subjects had an early-onset and a marked hyperkalemic phenotype, but normal blood pressure values. Functional experiments in Xenopus laevis oocytes and HEK293T cells demonstrated that these mutations strongly decrease the ubiquitination of the kidney-specific isoform KS-WNK1 by the KLHL3-CUL3 complex, rather than the long ubiquitous catalytically active L-WNK1 isoform. A corresponding CRISPR-Cas9 engineered mouse model recapitulated both the clinical and biological phenotype. Renal investigations showed increased activation of the SPAK-NCC phosphorylation cascade, associated with impaired ROMK apical expression in the distal part of the renal tubule. Altogether, these new WNK1 genetic variants highlight the importance of the KS-WNK1 isoform abundance on potassium homeostasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    7
    Citations
    NaN
    KQI
    []