Environmental correlates of geographic divergence in a phenotypic trait: A case study using bat echolocation

2017 
Divergence in phenotypic traits may arise from the interaction of different evolutionary forces, including different kinds of selection (e.g., ecological), genetic drift, and phenotypic plasticity. Sensory systems play an important role in survival and reproduction, and divergent selection on such systems may result in lineage diversification. Such diversification could be largely influenced by selection in different environments as a result of isolation by environment (IbE). We investigated this process using geographic variation in the resting echolocation frequency of the horseshoe bat species, Rhinolophus damarensis, as a test case. Bats were sampled along a latitudinal gradient ranging from 16°S to 32°S in the arid western half of southern Africa. We measured body size and peak resting frequencies (RF) from handheld individual bats. Three hypotheses for the divergence in RF were tested: (1) James’ Rule, (2) IbE, and (3) genetic drift through isolation by distance (IbD) to isolate the effects of body size, local climatic conditions, and geographic distance, respectively, on the resting frequency of R. damarensis. Our results did not support genetic drift because there was no correlation between RF variation and geographic distance. Our results also did not support James' Rule because there was no significant relationship between (1) geographic distances and RF, (2) body size and RF, or (3) body size and climatic variables. Instead, we found support for IbE in the form of a correlation between RF and both region and annual mean temperature, suggesting that RF variation may be the result of environmental discontinuities. The environmental discontinuities coincided with previously reported genetic divergence. Climatic gradients in conjunction with environmental discontinuities could lead to local adaptation in sensory signals and directed dispersal such that gene flow is restricted, allowing lineages to diverge. However, our study cannot exclude the role of processes like phenotypic plasticity in phenotypic variation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    107
    References
    8
    Citations
    NaN
    KQI
    []