Pulse duration constraint of whistler waves in magnetized dense plasma

2021 
Interactions between large-amplitude laser light and strongly magnetized dense plasma have been investigated by one- and two-dimensional electromagnetic particle-in-cell simulations. Since whistler waves have no critical density, they can propagate through plasmas beyond the critical density in principle. However, we have found the propagation of whistler waves is restricted significantly by the stimulated Brillouin scattering. It is confirmed that the period during which the whistler wave can propagate in overcritical plasmas is proportional to the growth time of the ion-acoustic wave via the Brillouin instability. The allowable pulse duration of the whistler wave has a power-law dependence on the amplitude of the whistler wave and the external magnetic field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []