Entire solutions of nonlocal elasticity models for composite materials

2017 
Many structural materials, which are preferred for the developing of advanced constructions, are inhomogeneous ones. Composite materials have complex internal structure and properties, which make them to be more effectual in the solution of special problems required for civil and environmental engineering. As a consequence of this internal heterogeneity, they exhibit complex mechanical properties. In this work, the analysis of some features of the behavior of composite materials under different loading conditions is carried out. The dependence of nonlinear elastic response of composite materials on loading conditions is studied. Several approaches to model elastic nonlinearity such as different stiffness for particular type of loadings and nonlinear shear stress–strain relations are considered. Instead of a set of constant anisotropy coefficients, the anisotropy functions are introduced. Eventually, the combined constitutive relations are proposed to describe simultaneously two types of physical nonlinearities. The first characterizes the nonlinearity of shear stress–strain dependency and the latter determines the stress state susceptibility of material properties. Quite satisfactory correlation between the theoretical dependencies and the results of experimental studies is demonstrated, as described in [ 2 , 3 ] as well as in the references therein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []