5D Entanglement in Star Polymer Dynamics

2018 
Star polymers are within the most topologically entangled macromolecules. For a star to move the current theory is that one arm must retract to the branch point. The probability of this event falls exponentially with molecular weight, and a quicker relaxation pathway eventually takes over. With a simulation over a hundred times faster than earlier studies, we demonstrate that the mean square displacement scales with a power law 1/16 in time, instead of the previously assumed zero. It suggests that star polymer motion is the result of two linear relaxations coinciding in time. By analogy to linear polymers, which reptate with a random walk embedded in a 3D network, we show that star polymers relax by a random walk in a 5D network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []