Evaluating Targeting Accuracy in the Focal Plane for an Ultrasound-guided High-intensity Focused Ultrasound Phased-array System

2019 
Phased arrays are increasingly used as high-intensity focused ultrasound (HIFU) transducers in the existing extracorporeal ultrasound-guided HIFU (USgHIFU) systems. The HIFU transducers in such systems are usually spherical in shape with a central hole where a US imaging probe is mounted and can be rotated. The image on the plane of treatment can be reconstructed through the image sequence acquired during the rotation of the probe. Therefore, the treatment plan can be made on the reconstructed images. In order to evaluate the targeting accuracy in the focal plane of such systems, the protocol of a method using a bovine muscle and marker-embedded phantom is described. In the phantom, four solid balls at the corners of a square resin model serve as the reference markers in the reconstructed image. The target should be moved so that both its center and the center of the square model can coincide according to their relative positions in the reconstructed image. Swine muscle with a thickness of about 30 mm is placed above the phantom to mimic the beam path in clinical settings. After sonication, the treatment plane in the phantom is scanned and the boundary of the associated lesion is extracted from the scanned image. The targeting accuracy can be evaluated by measuring the distance between the centers of target and lesion, as well as three derivative parameters. This method cannot only evaluate the targeting accuracy of the target consisting of multiple focal spots rather than a single focal spot in a clinically relevant beam path of the USgHIFU phased-array system, but it can be also used in the preclinical evaluation or regular maintenance of USgHIFU systems configured with phased-array or self-focused HIFU transducer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []