On the Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst.

2020 
Recently, there have been renewed interests in exploring new catalysts for ammonia synthesis under mild conditions. Electride-based catalysts are among the emerging ones. Ruthenium particles supported on an electride composed of a mixture of calcium and aluminum oxides (C12A7) have attracted great attention for ammonia synthesis due to their facile ability in activating N2 under ambient pressure. However, the exact nature of the reactive hydrogen species and the role of electride support still remain elusive for this catalytic system. In this work, we report for the first time that the surface adsorbed hydrogen, rather than the hydride encaged in the C12A7 electride, play the major role for ammonia synthesis over Ru/C12A7 electride catalyst with the aid of in situ neutron scattering techniques. Combining in situ neutron diffraction, inelastic neutron spectroscopy, density functional theory (DFT) calculation and temperature programmed reactions, the results provide direct evidence for not only the presence of encaged hydrides during ammonia synthesis but also the strong thermal and chemical stability of the hydride species in Ru/C12A7 electride. Steady state isotopic transient kinetic analysis (SSITKA) of ammonia synthesis showed that the coverage of reactive intermediates increased significantly when the Ru particles were promoted by the electride form (coverage up to 84%) of the C12A7 support rather than the oxide form (coverage up to 15%). Such a drastic change in the intermediates coverage on the Ru surface is attributed to the positive role of electride support where H2 poisoning effect is absent during ammonia synthesis over Ru. The fi nding of this work has signi fi cant implications for understanding catalysis by electride-based materials for ammonia synthesis and hydrogenation reactions in general.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    25
    Citations
    NaN
    KQI
    []