Cu powder doping effects on the structure and electro-magnetic properties of La0.7Ca0.3MnO3

2007 
The structure, electronic and magnetic properties of perovskite (1 ? x)La0.7Ca0.3MnO3(LCMO)/xCu (x is a mass percentage, x = 1%, 3%, 5%, 7%, 9%, 15%, 20%) have been studied. The nano-scale metal Cu powder was doped into the LCMO matrix. The results showed that some Cu element substituted for Mn ion in LCMO and the remainder resided in the grain boundaries in the form of a CuO phase because of the oxidation process when the Cu powder was sintered at high temperature in air. Cu existed in the form of Cu3+ ions in the samples at a low doping level (x ? 3%) and Cu2+ ions appeared when x > 3%. Because of the larger ionic radius of Cu2+ ions compared with the average Mn radius, it is likely that the Cu2+ ions in the proximity of the grain boundaries tend to separate into the boundaries. An amorphous phase of the Cu element was formed in the grain boundaries, which respond to the unusual electrical and magnetic behaviours of the heavily doped samples. A maximum MR value (~50%) around 210?K was observed in a magnetic field of 3000?Oe for the 5% doped samples. Besides the effect of Cu substituting for Mn ions in LCMO, the MR behaviour is also attributed to the properties of dopants which reside in the grain boundaries of the matrix grains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    5
    Citations
    NaN
    KQI
    []