A Novel Inhibition Modality for Phosphodiesterase 2A.

2020 
Phosphodiesterase type 2A (PDE2A) has received considerable interest as a molecular target for treating central nervous system diseases that affect memory, learning, and cognition. In this paper, the authors present the discovery of small molecules that have a novel modality of PDE2A inhibition. PDE2A possesses GAF-A and GAF-B domains and is a dual-substrate enzyme capable of hydrolyzing both cGMP and cAMP, and activation occurs through cGMP binding to the GAF-B domain. Thus, positive feedback of the catalytic activity to hydrolyze cyclic nucleotides occurs in the presence of appropriate concentrations of cGMP, which binds to the GAF-B domain, resulting in a "brake" that attenuates downstream cyclic nucleotide signaling. Here, we studied the inhibitory effects of some previously reported PDE2A inhibitors, all of which showed impaired inhibitory effects at a lower concentration of cGMP (70 nM) than a concentration effective for the positive feedback (4 muM). This impairment depended on the presence of the GAF domains but was not attributed to binding of the inhibitors to these domains. Notably, we identified PDE2A inhibitors that did not exhibit this behavior; that is, the inhibitory effects of these inhibitors were as strong at the lower concentration of cGMP (70 nM) as they were at the higher concentration (4 muM). This suggests that such inhibitors are likely to be more effective than previously reported PDE2A inhibitors in tissues of patients with lower cGMP concentrations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []