Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade

2018 
Sustainable agriculture in China is threatened by rapid socioeconomic development, urbanization, and climate change. In addition, the distribution of freshwater resources between regions is highly unequal, and water shortages are common in arid regions. The virtual water trade can help to ease water shortages in arid areas by utilizing the comparative advantage of water resources in other areas. However, sometimes the patterns of the virtual water trade do not fit the distribution of water resources and, in these instances, inter-regional coordination would help to improve the level of equality in the virtual water trade. We combined the concept of the Gini coefficient with a multi-objective optimization model to investigate the inter-regional coordination of the virtual water trade in an arid region of China. Agricultural data from different regions of Gansu Province in 2014 were used to explore methods of improving the equality of virtual water flow patterns in the agricultural sector. Three constraints (a crop supply constraint, an irrigation water constraint, and an economic benefit constraint) were set up to investigate the relationship between different challenges and the effects of inter-regional coordination. Our results validated the use of the proposed method in Gansu Province and indicated that it could be applied to other arid regions. Variations in crop supply, irrigation water, and economic benefits were found among the different constraint scenarios, illustrating the trade-offs between water-saving and agricultural objectives. Our results also showed the balance between various factors, including the equality of the virtual water patterns, water-saving measures, and economic benefits. These results support the effectiveness of inter-regional coordination and indicate that the improvement in equality and the adjustment cost should be balanced. Our findings will help to guide the planning of local crop acreages to achieve the best virtual water balance model between regions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []