Synthesis and characterization of Mn2+ doped ZnS nanocrystals self-assembled in a tight mesoporous structure

2009 
Abstract We report the synthesis, by a surfactant-assisted liquid–liquid reaction, of nanocrystalline ZnS doped with 0.2 mol% Mn 2+ ions self-assembled in a mesoporous structure. The XRD measurements demonstrate the formation of a sponge-like mesoporous material with a tight distribution of pores of 1.8 nm mean diameter built from cubic ZnS nanocrystals of 1.8 nm average size. TEM investigation confirms the formation of the mesoporous structure with walls of 3.1 nm mean thickness built from nanocrystallites of cubic ZnS. The ordering effect of self-assembling, which is reflected in the tight size distribution of crystallites and pores, might be also responsible for the well resolved EPR spectra, attributed to the presence of three types of isolated Mn 2+ paramagnetic centers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    35
    Citations
    NaN
    KQI
    []