Engineering an efficient poly-epitope vaccine against Toxoplasma gondii infection: A computational vaccinology study.

2020 
Abstract Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. Despite the importance of toxoplasmosis, there is no comprehensive strategy to control this disease. Hence, applying the new methods such as the poly-epitope vaccine can be successful. In the current project, to engineer a potent poly-epitope vaccine, 10 antigenic proteins including BiP, GRA1, GRA2, GRA5, MIC8, MIC13, P30, PI1, SOD and Rop2 were selected based on the database. Then, B cell, MHCI and MHCII epitopes of the selected antigenic proteins were isolated by the most accurate servers. The best predicted epitopes along with a molecular adjuvant were employed to engineer a poly-epitope vaccine. After engineering, different physicochemical features, secondary and tertiary structures, molecular docking of the designed vaccine were assessed. The results of this project revealed that the designed vaccine with 730 amino acids in length and molecular weight of 77.67 kDa was a soluble protein which could bind to its receptor with an energy of 6223.43. According to the achievements of this study, it seems the designed vaccine can be an appropriate candidate to apply.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []