Tree crickets optimize the acoustics of baffles to exaggerate their mate-attraction signal

2017 
Male tree crickets produce sounds at a specific pitch to attract females. The louder the call, the further the sound travels and the more females he can attract. But making loud sounds is difficult for small animals like insects. To produce sounds, tree crickets rub their wings together and set them into vibration. As the wings vibrate, their motion creates changes in the surrounding air pressure, which is perceived as sound. As the wings move forwards, they compress the air in front of them and thin the air behind them, working much like the membrane of a loudspeaker. However, when the compressed and thinned air meet at the edges of the wings, the sound cancels out. This problem is known as acoustic short-circuiting, and the smaller the wings, the larger this effect and the less efficient the broadcast of sound becomes. Tree crickets overcome acoustic short-circuiting by making baffles, for which they cut a hole near the centre of a leaf. The cricket then sings from inside this hole with its wings flat against the leaf surface, so that the sound has to travel to the leaf edge before short-circuiting. Not all baffles work equally well though, and scientists are interested to know whether tree crickets know how to make the best possible baffle to attract more females. To find out what makes an ideal baffle, Mhatre et al. first measured the wing vibrations and sounds of real tree crickets, and used them to simulate a cricket singing from different baffles. From these tests, three simple rules emerged that led to the best baffle: use the largest available leaf, make a hole the size of the wings, and place it at the centre of the leaf. Mhatre et al. then discovered that the crickets did not make a baffle every time – only when the leaves were large enough. This suggests that rather than being solely ‘robotic’ in their behaviour and the use of objects, insects can behave flexibly. When faced with a choice between two leaves, the crickets followed the same three decision rules that the scientists had discovered, and achieved near optimal baffles. Insects are thought to only be able to gradually improve an object or behaviour, but rarely to optimize it. However, the discovery that tree crickets can make optimal acoustic baffles in a single attempt means that we are only beginning to unravel the underappreciated abilities of insects. An enticing next step will be to see whether the creation of baffles could be considered as tool-making.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    20
    Citations
    NaN
    KQI
    []