Harmonic functions with finite $p$-energy on lamplighter graphs are constant
2015
The aim of this note is to show that lamplighter graphs where the space graph is infinite and at most two-ended and the lamp graph is at most two-ended do not admit harmonic functions with gradients in $\ell^p$ (\ie finite $p$-energy) for any $p\in [1,\infty[$ except constants (and, equivalently, that their reduced $\ell^p$ cohomology is trivial in degree one). Using similar arguments, it is also shown that many direct products of graphs (including all direct products of Cayley graphs) do not admit non-constant harmonic function with gradient in $\ell^p$. The proof relies on a theorem of Thomassen on spanning lines in squares of graphs.
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
8
References
2
Citations
NaN
KQI