Cycle-count-accurate processor modeling for fast and accurate system-level simulation

2011 
Ideally, system-level simulation should provide a high simulation speed with sufficient timing details for both functional verification and performance evaluation. However, existing cycle-accurate (CA) and cycle-approximate (CX) processor models either incur low simulation speeds due to excessive timing details or low accuracy due to simplified timing models. To achieve high simulation speeds while maintaining timing accuracy of the system simulation, we propose a first cycle-count-accurate (CCA) processor modeling approach which pre-abstracts internal pipeline and cache into models with accurate cycle count information and guarantees accurate timing and functional behaviors on processor interface. The experimental results show that the CCA model performs 50 times faster than the corresponding CA model while providing the same execution cycle count information as the target RTL model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    9
    Citations
    NaN
    KQI
    []