The two faces of a steroid antagonist: When an antagonist isn't

1995 
Abstract Activation of protein kinase A potentiates the transcriptional response mediated by the glucocorticoid receptor in responsive fibroblasts and in mammary carcinoma cells. This potentiation is ligand-dependent and occurs without detectable change in the phosphorylation of receptor. The transcriptional response to glucocorticoid or progestin agonists can be blocked by potent antagonists like RU 486. However, upon activation of protein kinase A, the antagonist action of RU 486 on both receptors is blunted. Indeed, RU 486 can itself activate transcription of a hormone-responsive promoter. The conditional agonist activity is observed with type II antagonists, those which recapitulate many of the early steps of ligand-dependent receptor activation, but not type I antagonists, which do not. These studies have now been extended to antimineralocorticoids. In COS-1 cells transfected with a mineralocorticoid receptor expression vector, treatment with 8-BromocAMP potentiates the response to the agonist aldosterone and elicits additional agonist activity in mineralocorticoid antagonists. A model is proposed wherein type II antagonist-receptor complexes occupy receptor binding sites on the genome. The antagonist, however, fails to promote a receptor conformation that can interact productively with a coactivator mediating the communication between receptor and the basal transcription apparatus. Activation of protein kinase A results in the recruitment or activation of a coactivator that permits recovery of receptor-mediated activation function. The recent documentation of conditional agonist activity in antagonists of several different classes of steroids could have significant implications for the use of steroid antagonists in the clinical setting, representing a previously unrecognized mechanism for the development of steroid resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    42
    Citations
    NaN
    KQI
    []