Relationship between Vascular Resistance and Sympathetic Nerve Fiber Density in Arterial Vessels in Children With Sleep Disordered Breathing

2017 
Background Sleep disordered breathing in children is associated with increased blood flow velocity and sympathetic overactivity. Sympathetic overactivity results in peripheral vasoconstriction and reduced systemic vascular compliance, which increases blood flow velocity during systole. Augmented blood flow velocity is recognized to promote vascular remodeling. Importantly, increased vascular sympathetic nerve fiber density and innervation in early life plays a key role in the development of early‐onset hypertension in animal models. Examination of sympathetic nerve fiber density of the tonsillar arteries in children undergoing adenotonsillectomy for Sleep disordered breathing will address this question in humans. Methods and Results Thirteen children scheduled for adenotonsillectomy to treat sleep disordered breathing underwent pupillometry, polysomnography, flow‐mediated dilation, resting brachial artery blood flow velocity (velocity time integral), and platelet aggregation. The dorsal lingual artery (tonsil) was stained and immunofluorescence techniques used to determine sympathetic nerve fiber density. Sympathetic nerve fiber density was correlated with increased resting velocity time integral ( r =0.63; P r =−0.71, P r =−0.64; P r =−0.77; P r =0.64; P P P Conclusions These results indicate that sympathetic activity is associated with change in both the function and structure of systemic vasculature in children with sleep disordered breathing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    12
    Citations
    NaN
    KQI
    []