Spectrally Stable and Efficient Pure Red CsPbI3 Quantum Dot Light-Emitting Diodes Enabled by Sequential Ligand Post-Treatment Strategy.

2021 
Metal halide perovskites are promising semiconductors for next-generation light-emitting diodes (LEDs) due to their high luminance, excellent color purity, and handily tunable band gap. However, it remains a great challenge to develop perovskite LEDs (PeLEDs) with pure red emission at the wavelength of 630 nm. Herein, we report a spectrally stable and efficient pure red PeLED by employing sequential ligand post-treated CsPbI3 quantum dots (QDs). The synthesized CsPbI3 QDs with a size of ∼5 nm are treated in sequential steps using the ligands of 1-hydroxy-3-phenylpropan-2-aminium iodide (HPAI) and tributylsulfonium iodide (TBSI), respectively. The CsPbI3 QD films exhibit improved optoelectronic properties, which enables the fabrication of a pure red PeLED with a peak external quantum efficiency (EQE) of 6.4% and a stable EL emission centered at the wavelength of 630 nm. Our reported sequential ligand post-treatment strategy opens a new route to improve the stability and efficiency of PeLEDs based on QDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []