Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures.

2016 
One-dimensional (1D) semiconducting heterostructures have been widely studied for optoelectronics applications because of their unique geometry and attractive physical properties. In this study, we successfully synthesized 1D ZnS/CdS heterostructures, which can be used to fabricate high performance ultraviolet/visible photodetectors. Due to the separation of photo-generated electron–hole pairs, the resultant photodetector showed excellent photoresponse properties, including ultrahigh Ion/Ioff ratios (up to 105) and specific detectivity (2.23 × 1014 Jones), relatively fast response speed (5 ms), good stability and reproducibility. Moreover, the as-fabricated flexible photodetectors showed great mechanical stability under different bending conditions. Our results revealed the possibility of 1D ZnS/CdS heterostructures for application in the detection of UV and visible light. The main advantages of the heterostructures have great potential application for future optoelectronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    39
    Citations
    NaN
    KQI
    []