Subcellular localization of GFP-myosin-V in live mouse melanocytes

1999 
Class-V myosins are two-headed actin-based mechanoenzymes that function in the transport and subcellular localization of organelles and possibly in the outgrowth of cellular processes. To determine which domains of myosin-V are involved in intracellular localization of this motor protein, we have expressed fusions of the green fluorescent protein with segments from two distinct myosin-V heavy chains. The expression patterns of constructs encoding four different domains of chick brain myosin-Va were compared to a single construct encoding the globular tail region of mouse myosin-Vb. In transfected mouse melanocytes, expression of the NH(2)-terminal head (catalytic domain) of chick brain myosin-Va codistributed with actin filaments throughout the cytoplasm. A similar construct encoding the myosin-Va head with the associated neck (light chain binding sites), also codistributed with actin filaments. The GFP-head-neck peptide was also highly concentrated in the tips of filopodia in B16 melanocytes wild type for myosin-Va (MYO5a gene), but was concentrated throughout the entire filopodia of S91-6 melanocytes derived from dilute mice with mutations in the MYO5a gene. Evidence is also presented that the globular tail of myosin-Va, but not myosin-Vb, targets this motor molecule to the centrosome as confirmed by colocalization in cells stained with antibodies to (gamma)-tubulin. Expression of the GFP-myosin-Va globular tail causes displacement of endogenous myosin-V from centrosomes as visualized by immunolabeling with antibodies to the head domain of myosin-V. Treatment with the microtubule-disrupting drug nocodazole markedly reduces myosin-V staining at the centrosome. In contrast, there was no detectable diminution of myosin-V staining at the centrosome in cells treated with the actin filament-disrupting drug cytochalasin D. Thus, while localization of the myosin-V motor domain to actin-rich regions is consistent with conventional models of actomyosin-based motility, localization to the centrosome occurs in the complete absence of the myosin-V motor domain and is dependent on intact microtubules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    34
    Citations
    NaN
    KQI
    []