Cortical-hippocampal functional connectivity during covert consolidation sub-serves associative learning: Evidence for an active “rest” state

2017 
Abstract We studied modulation of undirected functional connectivity (uFC) in cortical-hippocampal sub-networks during associative learning. Nineteen healthy individuals were studied (fMRI acquired on a Siemens Verio 3T), and uFC was studied between nodes in a network of regions identified by standard activation models based on bivariate correlational analyses of time series data. The paradigm alternated between Memory Encoding, Rest and Retrieval. “Rest” intervals promoted covert consolidation. Over the task, performance was broadly separable into linear (Early) and asymptomatic (Late) regimes, with late performance reflecting successful memory consolidation. Significant modulation of uFC was observed during periods of covert consolidation. The sub-networks which were modulated constituted connections between frontal regions such as the dorsal prefrontal cortex (dPFC) and dorsal anterior cingulate cortex (dACC), the medial temporal lobe (hippocampus, HPC), the superior parietal cortex (SPC) and the fusiform gyrus (FG). uFC patterns were dynamic in that sub-networks modulated during Early learning (dACC ↔ SPC, dACC ↔ FG, dPFC ↔ HPC) were not identical to those modulated during Late learning (dACC ↔ HPC, dPFC ↔ FG, FG ↔ SPC). Covert consolidation exerts systematic effects, and these results add to emerging evidence for the constructive role of the brain’s “resting state” in potentiating action.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    6
    Citations
    NaN
    KQI
    []